The Spectral Scale of a Self-Adjoint Operator in a Semifinite von Neumann Algebra
نویسندگان
چکیده
منابع مشابه
The Spectral Scale of a Self-Adjoint Operator in a Semifinite von Neumann Algebra
We extend Akemann, Anderson, and Weaver’s Spectral Scale definition to include selfadjoint operators from semifinite von Neumann algebras. New illustrations of spectral scales in both the finite and semifinite von Neumann settings are presented. A counterexample to a conjecture made by Akemann concerning normal operators and the geometry of the their perspective spectral scales in the finite se...
متن کاملa comparative study of the relationship between self-, peer-, and teacher-assessments in productive skills
تمایل به ارزیابی جایگزین و تعویض آن با آزمون سنتی مداد و کاغذ در سالهای اخیر افزایش یافته است. اکثر زبان آموزان در کلاس های زبان از نمره نهایی که استاد تعیین میکند ناراضی اند. این تحقیق جهت بررسی ارزیابی در کلاس های زبان انگلیسی به هدف رضایتمندی زبان آموزان از نمره هایشان انجام گرفته است که در آن نمرات ارائه شده توسط سه گروه ارزیاب (ارزیابی خود دانشجو، همسالان واستاد) در مهارت های تولید (تکل...
15 صفحه اولSpectral Behaviour of a Simple Non-self-adjoint Operator
We investigate the spectrum of a typical non-selfadjoint differential operator AD = −d2/dx2 ⊗ A acting on L(0, 1) ⊗ C, where A is a 2 × 2 constant matrix. We impose Dirichlet and Neumann boundary conditions in the first and second coordinate respectively at both ends of [0, 1] ⊂ R. For A ∈ R we explore in detail the connection between the entries of A and the spectrum of AD, we find necessary c...
متن کاملA Counterexample in Von Neumann Algebra Dynamics
In this essay we construct a noncommutative von Neumann dynamical system with certain pathological properties from the viewpoint of analogies with classical ergodic theory. These relate to obstructions to the existence of special kinds of subsystem or subextension. We will build our example as an extension of a commutative dynamical system via a unitary cocycle acting on a Hilbert bundle, and w...
متن کاملA GEOMETRIC SPECTRAL THEORY FOR n-TUPLES OF SELF-ADJOINT OPERATORS IN FINITE VON NEUMANN ALGEBRAS: II
Given an n-tuple {b1, ..., bn} of self-adjoint operators in a finite von Neumann algebra M and a faithful, normal tracial state τ on M , we define a map Ψ from M to R by Ψ(a) = (τ(a), τ(b1a), . . . , τ(bna)). The image of the positive part of the unit ball under Ψ is called the spectral scale of {b1, .., bn} relative to τ and is denoted by B. In a previous paper with Nik Weaver we showed that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2011
ISSN: 0161-1712,1687-0425
DOI: 10.1155/2011/789182